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Developed flows during combined convection in a vertical concentric annular chan- 
nel are discussed. The problem is solved for descending and ascending flows, A 
dimensionless equation is obtained for calculating the value of the heat-transfer 
coefficient averaged over the length of the channel. 

A vertical annular channel is a natural and very efficient shape for constraining the 
flow of a coolant with a developed heat-transfer surface. The use of such channels permits 
a rather simple construction of compact straight-through or countercurrent devices, Such 
schemes are used in air and liquid ground freezing columns employed in industrial and hy- 
draulic engineering structures in Siberia and the far north. 

Many papers [i-i0] have appeared on combined convection in vertical channels. These 
include papers in which an analytic solution of the problem is obtained in the so-called 
"shell" approximation [i] and studies based on various integral [2-4] and finite~difference 
[6-10] methods. Only a few papers, however, treat the problem of combined convection in 
finite-length annular channels. The most detailed study of this problem was made by Beck 
[5] and also in [3, 4], in which the Pigford integral method [2] was extended to the case 
of an annular tube. 

We use an explicit finite-difference method to solve the problem of combined convection 
in a vertical concentric annular channel for free and forced convection in the same and op- 
posite directions. 

The problem is solved under the assumption that the inner tube of the channel is ther- 
mally insulated, the temperature of the nonadiabatic outer wall is constant, and the velocity 
and temperature profiles in the entrance cross section are uniform. In addition, it is as- 
sumed that the physical properties of the liquid, except the density, are constant. The vari- 
ation of the density with the temperature is assumed linear and is taken into account only 
in the term in the equation of motion which describes the buoyant force, 

The dimensionless hydrodynamics and heat-transfer equations describing the axisymmetric 
flow of a liquid in a vertical annular channel and the appropriate boundary conditions have 
the form [ii] 
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r ~ < r < r a ,  x = O ,  u- -uo ,  v = p = t = O ,  

r = r ~ ,  x ~ O ,  u = v = O ,  Or~Or=O, 

r = r 2 ,  x ~ O ,  u = v = O ,  t =  I. 

(5) 

The system of equations (1)-(4) with boundary conditions (5) was solved numerically by 
using an explicit finite-difference method which is a modification of the Bodoia--Osterle 
method [6] applied to an annular channel. The order of approximation of the difference scheme 
used is O(Ax) + O(Ar2). At each step the system of difference analogs of Eqs. (i)-(4) was 
solved in the following sequence: the energy equation, the momentum equation simultaneously 
with the condition of constant flow rate, and the equation of continuity. 

The calculations were performed for free and forced convection in the same and opposite 
directions. In the calculational process the physical properties of the coolant, the channel 
geometry, the flow rate of the liquid, and the temperature difference between the nonadiabatic 
wall and the coolant were varied. 

Figures 1 and2 show the development of the dimensionless axial velocity profile and 
the dimensionless temperature profile for free and forced convection in the same and opposite 
directions. The value of A = Gr/Re has a major effect on the development of the velocity 
profile. 

Calculations showed that for [AI ~ I00 the effect of free convection is vanishingly 
small and the velocity profile develops as in pure forced flow. For IAI >i00 the development 
of the velocity profile is significantly different from the corresponding isothermal case, as 
is clear from the figures. 

A general qualitative characteristic can be obtained by considering thebalance offorces 
responsible for the nature of the flow. Beginning with the entrance crosssection both ther- 
mal and dynamic boundary layers develop simultaneously at the nonadiabatic outerwall. A buoy-~ 
ant force develops in the heated or cooled boundary layer of the coolant. So long as the 
volume of liquid in the thermal layer is small, the buoyant forces have little effect on the 
shape of the velocity profile, and the flow has a viscous-inertial character. The length of 
this portion depends on the Prandtl number. The smaller the Prandtl number, the more rapidly 
the thermal boundary layer develops, and the more rapidly the flow goes over into the regime 
where free convection predominates. As the thermal boundary layer increases in thickness the 
buoyant forces become comparable to or larger than the inertial and viscous forces. From 
this instant the velocity profile is strongly distorted: The liquid is either speeded up (Fig. 
la) or slowed down (Fig. 2a) at the wall depending on the direction of the heat flow. Simul- 
taneously, as a consequence of the constant flow rate the velocity in the core decreases or 
increases, respectively. The viscous-gravitational flow region continues until the thermal 
boundary layer reaches the inner thermally insulated wall. Then the whole flow volume begins 
to get heated (Fig. ib) or cooled (Fig. 2b) to the temperature of the outer Wall, and the ef- 
fect of free convection decreases. The flow reverts to the viscous-inertial regime until it 
is stabilized, The dimensions of the characteristic zones enumerated depend on the Prandtl 
number, A and the channel width. 

Free convection affects the resistance as a consequence of the rearrangement of the ve- 
locity profile and friction losses. The hydraulic resistance coefficients were calculated 
from the pressure distribution, and the coefficient of friction was calculated from theveloc- 
ity distribution, 

The heat-transfer data are shown in Figs. 3 and 4. Figure 3 shows the variation of the 
local Nusselt number along the length of a channel of width K = 0.25 for various values of 
the Prandtl number and A. 

It can be seen from Fig. 3 that for pure forced flow (A = O) the dimensionless heat- 
transfer coefficient approaches a limiting valuewhich depends on the width of the channel. 
The calculated values of the limiting Nusselt numbers agree with other data [ii]. 
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Fig. i. Typical developing profiles of dimen- 
sionless axial velocity (a) and dimensionless 
temperature (b) for forced and free convection 
in the same direction when K = 0.5, Pr = I, A = 
i000; i) x = O; 2) 0.I; 3) 0.2; 4) 0.4; 5) 1,0; 
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Typical developing profiles of dimen- 
slonless axial velocity (a) and dimensionless 
temperature (h) for forced and free convection 
in opposite directions when K = 0,5, Pr = i, 
A =--100; I) x = 0; 2) 0.i; 3) 0.6; 4) 1.0; 5) 
m. 

It can be seen from Fig. 3 that when free convection is superimposed on forced flow the 
heat-transfer curve has a local maximum at a certain distance from the entrance cross section. 
This behavior of the local Nusselt number when the directions of free and forced convection 
coincide has been noted experimentally [5] for an annular channel and theoretically [9, i0] 
for a circular tube. 

This phenomenon can be accounted for in the following way. Close to the channel en- 
trance free convection has almost no effect, and therefore the same relationships are ob- 
served as in forced flow; i.e., the heat transfer decreases. 

Farther from the entrance cross section free convection beg%ns to have an effect, since 
the boundary layer of the liquid is heated up and a buoyant force develops, The flow rate 
in the boundary layer is increased somewhat as a result of free convection, so that in spite 
of a decrease in density the flow rate through a cross section of the boundary layer exceeds 
the flow rate through that same cross section for a uniform velocity profile. Therefore, the 
displacement of liquid from the boundary layer into the flow core and the acceleration of the 
core, which are usual in forced convection, do not occur; on the contrary, the velocity in 
the flow core is decreased and the flow lines are diverted toward the wall. As this occurs 
liquid is displaced from the flow core into the boundary layer and there is a further accel- 
eration of the flow at the wall, whlch leads to increased heat transfer as compared with 
forced flow. 
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Fig. 3. Variation of local Nusselt number along the length of an annular channel 
of width K = 0.25 when the directions of free and forced convection coincide, i) 
Pr = i, A = 0; 2) Pr = i0, A = 0; 3) Pr = i0, A = i00. 

Fig. 4. Comparison of theory and experiment. 

As the thermal boundary layer reaches the inner thermally insulated wall the temperature 
of the liquid begins to level out over the cross section of the channel, and heat transfer 
decreases toward its limiting value. 

Calculations show that as the width of the channel is decreased, i.e., asK is increased, 
free convection has a smaller effect on heat transfer, and the maximum on the graph of the 
local Nusselt number becomes progressively flatter and less distinct. 

Figure 4 compares the calculated local Nusselt numbers with the experimental local heat- 
transfer coefficients [12]. The theoretical and experimental results differ at most by • 

The calculated Nusselt numbers averaged over the length of the channel are well approx- 
imated by the empirical relation 

Nuav= 2Prh(1--K)'/'~ (-~-) '/3[ ( Re ~/a + 0.0136 , exp  - -  1.23 1 Gr '/6 { G r / , / ~ l  
Pr z / ~ , R e /  ] ' 

(6) 

0.3 
n = 0.27-I- ~ + 0.06K, 

which takes account of the effect of free and forced convection, size, and the physical prop- 
erties of the coolant. 

Equation (6) is valid when free and forced convection are in the same direction for 1 K 
Pr S 50, 0 S Gr K l0 s, i00 ~ Re ~ 2000, and I0 ~ L/d e S 200. 

NOTATION 

dl = 2ri, d2 = 2r2, diameters of inner and outer tubes; d e = 2R e = d= -- d~, equivalent 
diameter; L, length; K = dl/d=, dimensionless width of annular channel; P, pressure, Po, hy- 
drostatic pressure; p = (P--Po)R;/pL2~2), dimensionless pressure of liquid; R, X, radial and axial 
coordinates; r = R/Re, x = X/L, xl = X/d e , dimensionless coordinates; T, temperature; To, en- 
trance temperature of liquid; Tw, temperature of outer wall of channel; Tm, mean bulk temper- 
ature of liquid in cross section under consideration; t = (T -- To)/(T w -- To), dimensionless 
temperature; U, V, axial and radial velocity components; v = VRe/9, u = UR~/vL, dimensionless 
velocity components; Uo, dimensionless axial velocity at channel entrance; g, acceleration 
due to gravity; B, volume coefficient of expansion, %, thermal conductivity; Cp, specific 
heat; p, density; ~, coefficient of kinematic viscosity; a, thermal diffusivity of liquid; 
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Pr = ~/a, Prandtl number; Re = Ude/9, Reynolds number; Gr = g8d$ (Tw--To)/~ 2, Grashof num- 

ber; B~ = Gr / (16de /L ) ,  parameter  in momentum equa t ion ;  ~o, l o c a l  h e a t - t r a n s f e r  c o e f f i c i e n t  
calculated from initial temperature head (T -- To); ~m' local heat-transfer coefficient cal- w 
culated from local temperature head (T w- T m); Nuo = ~ode/X , NUm=~mde/X, local Nusselt 

1 

numbers; Nuav= f Nu~ ; N u s s e l t  number averaged over  l eng th  of channel ;  Nuot, Nuoe, c a l c u l a t e d  
~  

0 

and experimental local Nusselt numbers. 
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INTENSIFICATION OF HEAT EXCHANGE IN BUNDLES OF RODS LONGITUDINALLY 

BATHED BY GAS 

N. A. Minyailenko and P. T. Smenkovskaya UDC 536.244 

Functions for the calculation of heat exchange and hydraulic resistance in bundles 
of rods with artificial roughness are presented and the optimum dimensions and shape 
of the roughness are indicated. 

The creation of high-intensity thermoenergetic devices requires the intensification of 
the processes of heat exchange. This problem is particularly urgent for devices having gas 
cooling, since gas coolants~ while having a number of advantages over others (safety in 
operation, the possibility of use in atomic gas-turbine installations, etc,), have drawbacks 
connected with the low density, small heat capacity, and low coefficient of thermal conduc- 
tivity, 

Various means exist for the intensification of gaseous heat exchange. One of the sim- 
plest means is an increase in the velocity of the coolant, but the possibilities of this means 
are limited, since with an increase in the velocity of the coolant the resistance and the 
power for pumping the coolant grow simultaneously with the increase in the heat-transfer co- 
efficient. Another means of intensification of heat exchange is based on the use of more 
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